CHAPTER 5

section 5.1

- 2) f(x) has an absolute maximum and local maximum value f(1.5) at x = 1.5
- f(x) has no absolute (local) minimum.
- **12)** f(x) has an absolute maximum value 1 at x = 0 and x = 2
- f(x) has an absolute minimum value 0 at x = 1
- **20)** The value of c that satisfies the conclusion of the mean value theorem is

 $c = \sqrt{3}$ (since $\left(-\sqrt{3}\right) \notin (1,3)$).

section 5.2

- 2) f(x) is increasing on (-3, -1).
- f(x) is decreasing on $(-\infty, -3) \cup (-1, \infty)$
- f(x) has a local maximum value f(-1) = 5 at x = -1

f(x) has a local minimum value f(-3) = 1 at x = -3

The graph of f(x) is concave up on $(-\infty, -2)$ and concave down on $(-2.\infty)$

f(x) has an inflection point (-2,3) at x = -2

8) $D_f = R$

y-intercept point is (0,3).

The function is neither even nor odd and not periodic.

The function has no vertical asymptote .

The function has no horizontal asymptote .

The critical numbers are -1, 1

f(x) is increasing on $(-\infty,-1)\cup(1,\infty)$.

f(x) is decreasing on (-1, 1)

f(x) has a local maximum value f(-1) = 5 at x = -1

f(x) has a local minimum value f(1) = 1 at x = 1

The graph of f(x) is concave up on $(0, \infty)$ and concave down on $(-\infty.0)$

f(x) has an inflection point (0,3) at x=0

 $f(x) = x^3 - 3x + 3$

section 5.3

2) 3

6) 0

10) 0

12) $\frac{1}{2}$

14) 1