CHAPTER 5

section 5.1

2) $f(x)$ has an absolute maximum and local maximum value $f(1.5)$ at $x=1.5$ $f(x)$ has no absolute (local) minimum.
3) $f(x)$ has an absolute maximum value 1 at $x=0$ and $x=2$
$f(x)$ has an absolute minimum value 0 at $x=1$
4) The value of c that satisfies the conclusion of the mean value theorem is $c=\sqrt{3} \quad($ since $(-\sqrt{3}) \notin(1,3))$.

section 5.2

2) $f(x)$ is increasing on $(-3,-1)$.
$f(x)$ is decreasing on $(-\infty,-3) \cup(-1, \infty)$
$f(x)$ has a local maximum value $f(-1)=5$ at $x=-1$
$f(x)$ has a local minimum value $f(-3)=1$ at $x=-3$
The graph of $f(x)$ is concave up on $(-\infty,-2)$ and concave down on $(-2 . \infty)$ $f(x)$ has an inflection point $(-2,3)$ at $x=-2$

3) $D_{f}=R$
y-intercept point is $(0,3)$.
The function is neither even nor odd and not periodic.
The funcion has no vertical asymptote .
The funcion has no horizontal asymptote .
The critical numbers are $-1,1$
$f(x)$ is increasing on $(-\infty,-1) \cup(1, \infty)$.
$f(x)$ is decreasing on $(-1,1)$
$f(x)$ has a local maximum value $f(-1)=5$ at $x=-1$
$f(x)$ has a local minimum value $f(1)=1$ at $x=1$
The graph of $f(x)$ is concave up on $(0, \infty)$ and concave down on $(-\infty .0)$
$f(x)$ has an inflection point $(0,3)$ at $x=0$

$$
f(x)=x^{3}-3 x+3
$$

section 5.3
2) 3
6) 0
10) 0
12) $\frac{1}{2}$
14) 1

