$\begin{array}{c} \text{math } 464 \\ \text{Second Homework} \\ \text{Due Date Sunday } 18/\ 6\ /\ 1437,\ \text{at } 11:55\ \text{Pm}. \end{array}$

Name:	Number:
	Always try to justify your answer (SHORT PROOF).

Q1: Prove or disprove:

(a) Every topology has a Subbase.

(b) If β' is a base for the topological space (X, τ) and $\beta' \subset \beta$. Then β is a base for τ .

Q2: Let X be any set which has more than one element. Fix an element $p \in X$. Define $\mathcal{T}_p \subset \mathcal{P}(X)$ as follows:

$$\mathcal{T}_p = \{\emptyset\} \cup \{W \subseteq X : p \in W\}.$$

Check that \mathcal{T}_p is a topology on X. \mathcal{T}_p is called the particular point topology on X.

Page 2 of 2

Q3: Consider the lower limit topology τ on \mathbb{R} which has

 $\beta = \{[a,b): a,b \in \mathbb{R}; a < b\}$ as its base. Show that [1,7) is τ -clopen set ?

Q4: Let $X = \{a, b, c, d, e, f\}$, and $S = \{\{a\}, \{a, b\}, \{b, c\}, \{c, d\}, \{d, e\}, \{e, f\}, \{f\}\}$ is a subbasis for the topology τ on X. What is τ ?

[Classify τ (kind and members)]

Good Luck:)